中華民國結構工程技師公會全國聯合會台灣省、台北市、高雄市、新北市、台中市、台南市、桃園市結構工程技師公會

『新版 RC 規範之主要變革部分說明』研討會

鋼筋直線伸展和機械續接

李宏仁

教授兼系主任

國立雲林科技大學營建工程系

簡報大綱

- 鋼筋直線伸展與搭接長度
- 機械式續接設計相關規定
- 機械式續接檢驗
- 結語與展望

鋼筋續接之必要性

- 鋼筋廠庫存 18 m
- 拖板車運輸 9~12 m
- 徒手施工 6~9 m

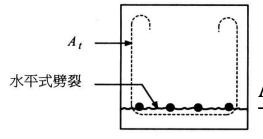
鋼筋續接(Splice)之種類

- · 搭接 (Lap splices)
 - 適合小號鋼筋,大號鋼筋搭接長度過長,不適合
- · 銲接 (Butt welded joint)
 - 銲接高溫會使鋼筋局部變脆而影響強度與韌性
 - -增進銲接性鋼筋W、合適銲接程序、技術人員…
 - -以國內之施工環境, 銲接品質管制是最大挑戰
- ・機械式續接 (Mechanical splices)
 - -大號鋼筋續接最常用的選擇(強度、韌度、經濟)

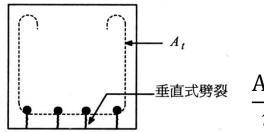
直線伸展長度(詳細法)

我國規範 沒乘 Ψ_q

受拉竹節鋼筋及麻面鋼線之伸展長度la之計算為:


$$\ell_{d} = \left(\frac{f_{y}}{3.5\lambda\sqrt{f_{c}'}}\frac{\psi_{t}\psi_{e}\psi_{s}}{\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)}\right)d_{b} \qquad \left[\ell_{d} = \left(\frac{f_{y}}{1.1\lambda\sqrt{f_{c}'}}\frac{\psi_{t}\psi_{e}\psi_{s}}{\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)}\right)d_{b}\right] \qquad (25.4.2.4a)$$

式中圍東項 $(c_b + K_{tr})/d_b$ 之值不得大於2.5,且


$$(c_b + K_{tr})/d_b$$
 之值不得大於2.5,且 即使是高強度箍筋 $K_{tr} = \frac{40A_{tr}}{sn} = \frac{A_{tr}(4200)}{105sn}$ 也只能取**4200**

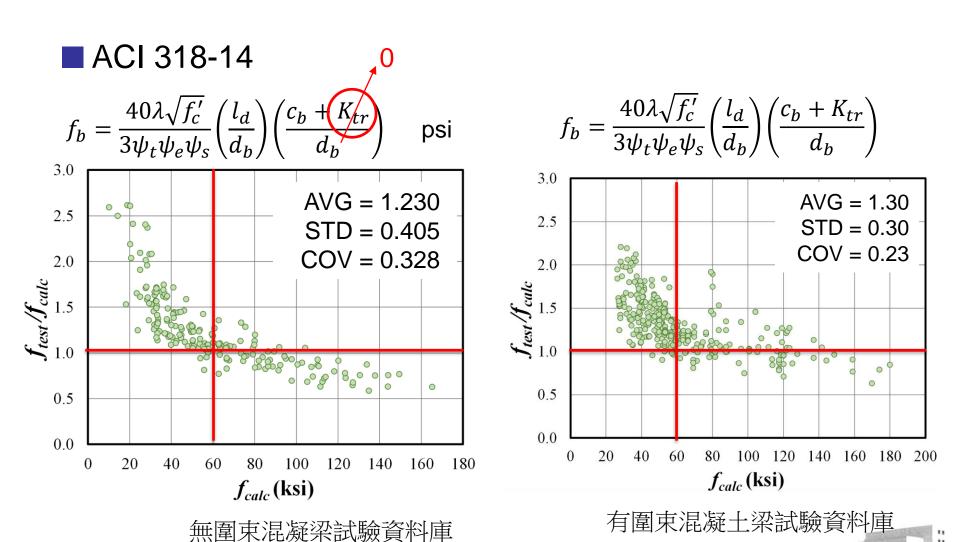
+U)

式中,n為在劈裂面上待伸展或續接之鋼筋或鋼線之總根數。為簡化設計,即使有配 置横向鋼筋,仍可使用 $K_{rr}=0$ 計算。

$$\frac{A_{tr}}{n} = \frac{2A_t}{4}$$

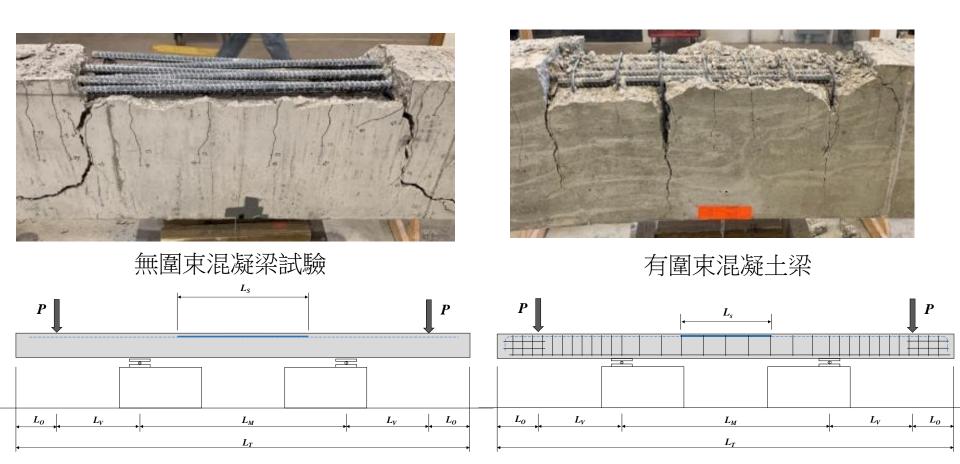
25.4.2.2 當f_v≥5,600 kgf/cm² [550 MPa]之鋼筋,其中心距小於15 cm時,應配置橫向鋼

筋使滿足 K_{tr} 不小於 $0.5d_{h}$ 。



直線伸展長度(簡算法)

表25.4.2.3 受拉竹節鋼筋及麻面鋼線之伸展長度 (f_c' and f_y in kgf/cm^2)


表25.4.2.3 受拉竹節鋼筋及	、	$(f_c \text{ and } f_y \text{ in } kgf/cm^2)$
$\left(\frac{c_b+K_{tr}}{d_b}\right)$ =1.5 鋼筋間距及保護層厚度	D19及較小之鋼筋 與麻面鋼線	D22及 較大之鋼筋
待伸展或搭接之鋼筋或鋼線之淨間距不小於 d_b ,淨保護層厚至少 d_b ,以及 ℓ_d 範圍內肋筋或箍筋不少於規範規定之最小值。或待伸展或搭接之鋼筋或鋼線之淨間距至少 $2d_b$,以及淨保護層至少 d_b 。	$\frac{f_y \psi_t \psi_e}{6.6 \lambda \sqrt{f_c'}} d_b$	$\left[\begin{array}{c} \Delta \end{array}\right]$ $\left[\begin{array}{c} f_y\psi_t\psi_e \\ \hline 5.3\lambda\sqrt{f_c'} \end{array}\right]$
其他情況	$rac{f_y\psi_t\psi_e}{4.4\lambda\sqrt{f_c'}}d_b$	$\frac{f_y \psi_t \psi_e}{3.5 \lambda \sqrt{f_c'}} d_b$

直線伸展長度(詳細法)之安全係數

Frosch, R. J., Fleet, E. T. & Glucksman, R. (2020). Development and Splice Lengths for High-Strength Reinforcement, Volume I: General Bar Development.

搭接試驗法,假設搭接長度=伸展長度

Test setup at Purdue University

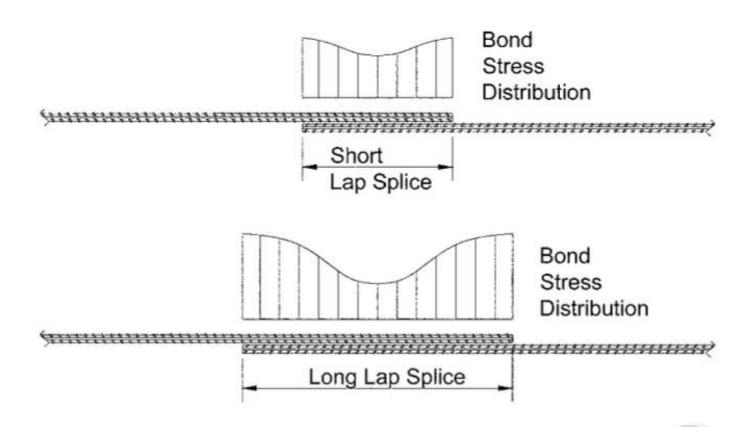
ACI 318-19 新增鋼筋等級修正因數 ψ_g

	Grade 40 or Grade 60	1.0
Reinforcement grade ψ_g	Grade 80	1.15
βιασύ ψη	Grade 100	1.3

➤ Modification in general development length equation 25.4.2.4(a)

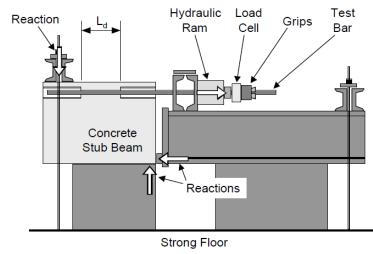
$$\ell_d = \frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c'}} \frac{\psi_t \psi_e \psi_s \psi_g}{\left(\frac{c_b + K_{tr}}{d_b}\right)} d_b \ge 12 \text{ in.} \qquad (\text{ in.})$$

 \triangleright Provision 25.4.2.2, $K_{tr} \ge 0.5 d_b$ for $f_y \ge 80,000$ psi, if longitudinal bar spacing < 6 in.


ACI 318-19直線伸展長度 (簡算法)

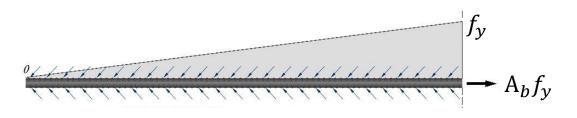
	し 央 行	$\emptyset \setminus (f_c)$ and f_y in psi)
$\left(\frac{c_b + K_{tr}}{d_b}\right) = 1.5$ Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$rac{f_y\psi_t\psi_eoldsymbol{\psi_g}}{25\lambda\sqrt{f_c'}}d_b$	$rac{f_y\psi_t\psi_eoldsymbol{\psi_g}}{20\lambda\sqrt{f_c'}}d_b$
Other cases	$\frac{3f_y\psi_t\psi_e\psi_g}{50\lambda\sqrt{f_c'}}d_b$	$\frac{3f_y\psi_t\psi_e\psi_g}{40\lambda\sqrt{f_c'}}d_b$

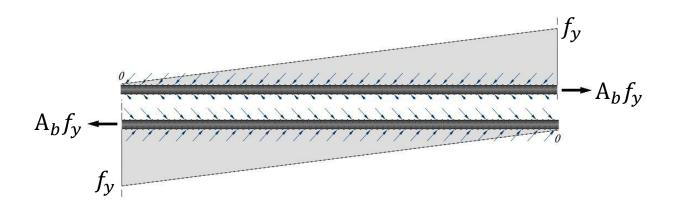

ACI 318-19 新增 ψ_g 之理由


Canbay, E., and Frosch, R. J., 2005, "Bond Strength of Lap-Spliced Bars," ACI Structural Journal, V. 102, No. 4, Jul.-Aug., pp. 605-614.

伸展與搭接試驗之差異: $\frac{dM}{dx} = V$

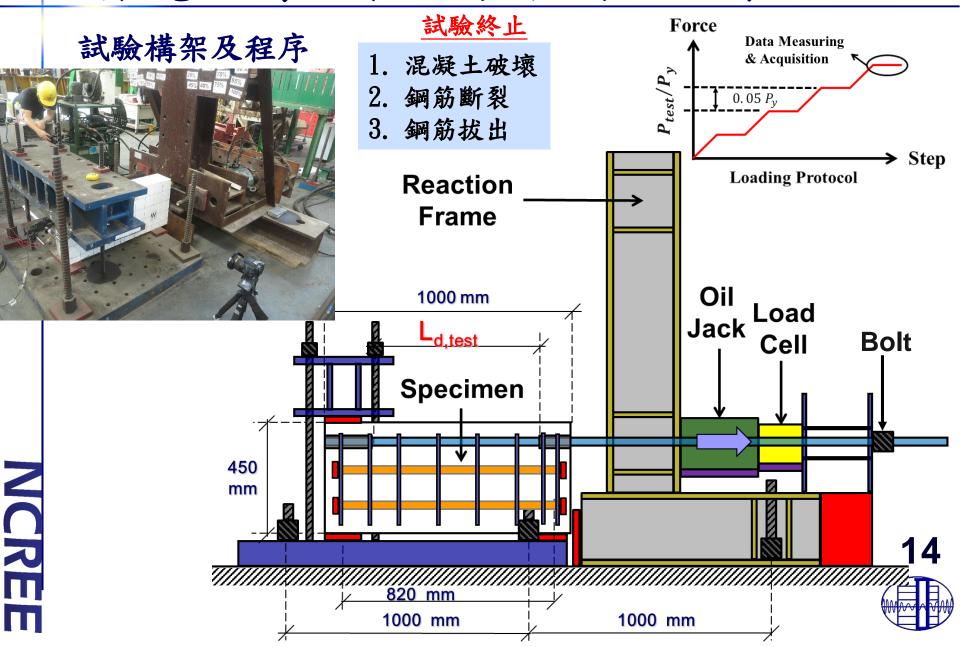
Test Bar(s)

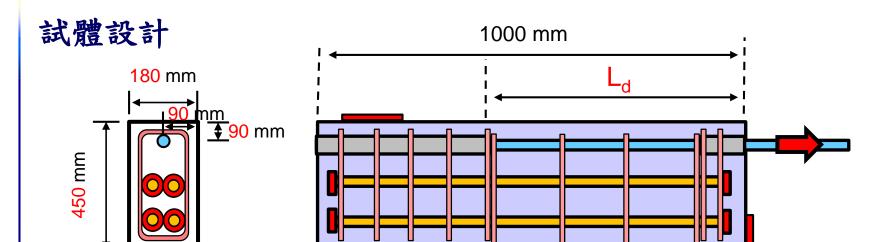

Test bar placed under constant moment.


Moment Diagram

ASTM A944 Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens

圖片來源: Thompson, M. K. (2002). The Anchorage Behavior of Headed Reinforcement in CCT Nodes and Lap Splices. PhD. The University of Texas at Austin.


若握裹力均勻分布 則搭接長度等於伸展長度



林克強博士在國震執行的握裹試驗

Design Parameters

Specimens: 20

1. Bar size : **D32**

2. Geometry: Deformed bar (Parallelogram, Diamond)

3. f_c': 28, 49,70, 85 MPa

4. f_v: 420, 550, 690 MPa

5. *f_{vt}* : 420 MPa

6. Splitting index : 3.87, 4.92

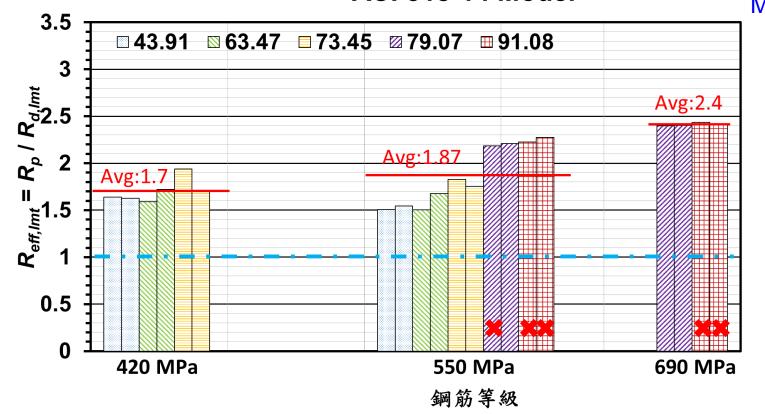
Design Parameters of Specimens

_											
	specimen	f_c' (MPa)	<i>f_y</i> (MPa)	$d_b \pmod{mm}$	R_r	$C_{b,s}$ (mm)	$C_{b,t}$ (mm)	S_s (mm)	$\frac{(C_b + K_{tr})}{d_b}$	$\begin{pmatrix} L_{d,14} \\ (\text{mm}) \end{pmatrix}$	$L_{d,test}$ (mm)
BF:	28F42S150DE	28	420	32	0.097	90	90	150	3.87	730	450
BF	28F55S150DE	28	550	32	0.094	90	90	150	3.87	956	600
BF	28F42S150Di	28	420	32	0.154	90	90	150	3.87	730	450
BF	28F55S151Di	28	550	32	0.133	90	90	150	3.87	956	600
BF4	49F42S150DE	49	420	32	0.090	90	90	150	3.87	607	450
BF4	49F55S150DE	49	550	32	0.097	90	90	150	3.87	795	600
BF4	49F42S150Di	49	420	32	0.145	90	90	150	3.87	607	450
BF4	49F55S151Di	49	550	32	0.138	90	90	150	3.87	795	600
BF	70F42S150DE	70	420	32	0.087	90	90	150	3.87	578	450
BF	70F55S150DE	70	550	32	0.094	90	90	150	3.87	757	450
BF	70F42S150Di	70	420	32	0.134	90	90	150	3.87	578	450
BF'	70F55S151Di	70	550	32	0.130	90	90	150	3.87	757	450
BF	85F55S75DE	85	550	32	0.099	90	90	75	4.92	757	450
BF	85F69S75DE	85	690	32	0.102	90	90	75	4.92	950	450
BF	85F55S75Di	85	550	32	0.121	90	90	75	4.92	757	450
BF	85F69S75DE-BC	85	690	32	0.101	90	90	75	4.92	950	450
BF	100F55S75DE	100	550	32	0.093	90	90	75	4.92	757	450
BF	100F69S75DE	100	690	32	0.095	90	90	75	4.92	950	450
BF	100F55S75Di	100	550	32	0.136	90	90	75	4.92	757	450
BF	100F69S75DE-BC	100	690	32	0.099	90	90	75	4.92	950	450

6

Test Results with ACI 318-14

$$R_{eff,lmt} = \frac{R_p}{R_{d,lmt}} \qquad R_p = \frac{P_{test}}{P_y} \qquad R_{d,lmt} = \frac{L_{d,test}}{L_{d,318-14}}$$


$$f_c' \le 70 \text{ MPa}$$

$$1.0 \le \frac{(C_b + k_{tr})}{d_b} \le 2.5$$

$$L_{d,318-14} = 0.9 \frac{f_y}{\lambda \sqrt{f_c'}} \frac{\Psi_t \Psi_e \Psi_s}{\left(\frac{c_b + K_{tr,ACI318}}{d_b}\right)} d_b$$

ACI 318-14 Model

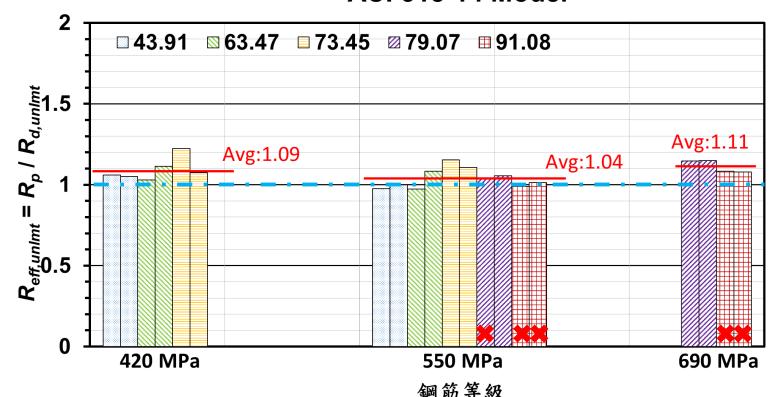
MPa 單位

NCRE

解除混凝土計算強度上限和束制度上限

$$R_{eff,unlmt} = \frac{R_p}{R_{d,lmt}}$$

$$f_c' \le 100 MPa$$


$$1.0 \le \frac{(C_b + k_{tr})}{d_b} \le 4.92$$

$$R_p = \frac{P_{test}}{P_{v}}$$

$$R_{p} = \frac{P_{test}}{P_{y}} \qquad R_{d,unlmt} = \frac{L_{d,test}}{L_{d,318-14}}$$

$$L_{d,318-14} = 0.9 \frac{f_{y}}{\lambda \sqrt{f_{c}'}} \frac{\Psi_{t} \Psi_{e} \Psi_{s}}{\left(\frac{c_{b} + K_{tr,ACI 318}}{d_{b}}\right)} d_{b}$$
ACI 318-14 Model

ACI 318-14 Model

18

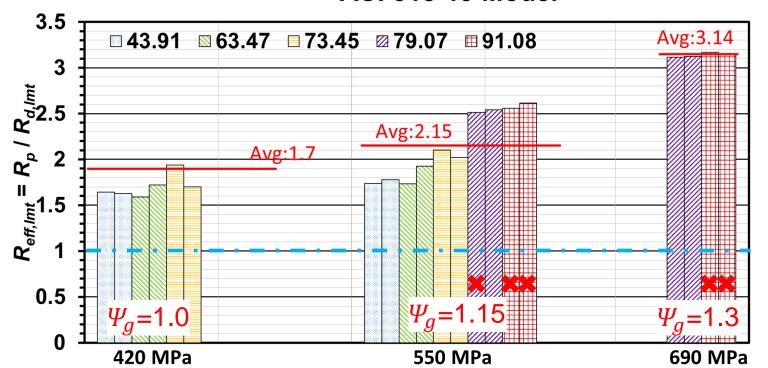
NCRE

鋼筋等級

Test Results with ACI 318-19

$$R_{eff,lmt} = \frac{R_p}{R_{d,lmt}}$$

$$f_c' \le 70 MPa$$


$$1.0 \le \frac{(C_b + k_{tr})}{d_b} \le 2.5$$

$$R_p = \frac{P_{test}}{P_y}$$

$$R_{p} = \frac{P_{test}}{P_{y}} \qquad R_{d,lmt} = \frac{L_{d,test}}{L_{d,318-19}}$$

$$L_{d,318-19} = 0.9 \frac{f_{y}}{\lambda \sqrt{f_{c}'}} \frac{\Psi_{t} \Psi_{e} \Psi_{s} \Psi_{g}}{\left(\frac{c_{b} + K_{tr,ACI318}}{d_{b}}\right)} d_{b}$$

ACI 318-19 Model

19

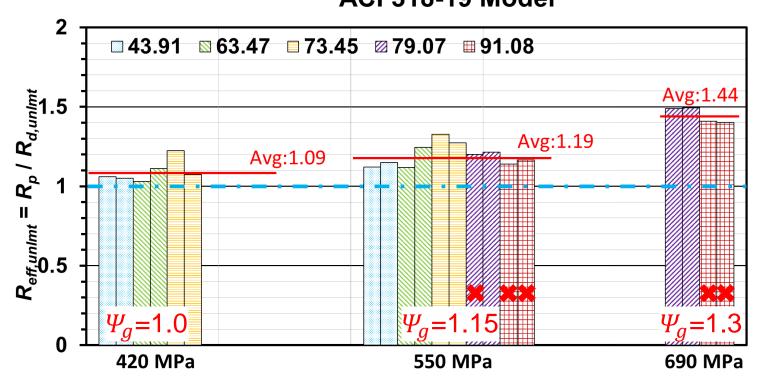
鋼筋等級

解除混凝土計算強度上限和束制度上限

$$R_{eff,unlmt} = \frac{R_p}{R_{d,lmt}}$$
$$f'_{l} < 100 MPa$$

$$R_p = \frac{P_{test}}{P_y}$$

$$R_p = \frac{P_{test}}{P_y} \qquad R_{d,unlmt} = \frac{L_{d,test}}{L_{d,318-19}}$$


$$f_c' \le 100 MPa$$

 $1.0 \le \frac{(C_b + k_{tr})}{d_b} \le 4.92$

NCRE

$$L_{d,318-19} = 0.9 \frac{f_y}{\lambda \sqrt{f_c'}} \frac{\Psi_t \Psi_e \Psi_s \Psi_g}{\left(\frac{c_b + K_{tr,ACI318}}{d_b}\right)} d_b$$

ACI 318-19 Model

鋼筋等級

25.5.2 受拉竹節鋼筋及麻面鋼線之 搭接長度

解說:

國震中心研究資料(Lin等人 2020)顯示在混凝土有圍束情況下,高強度鋼筋所需之伸展長度與鋼筋降伏強度呈線性關係。

美國研究資料則顯示鋼筋所需之搭接長度並非與鋼筋之降伏強度呈線性關係(Orangun 等人 1977; Canbay and Frosch 2005),故只對搭接長度新增強度等級因數 ψ_g ,係考量鋼筋之降伏強度對搭接長度的影響。

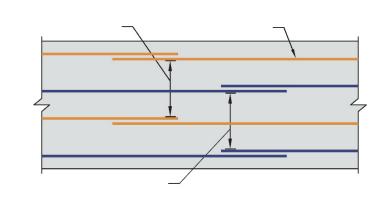
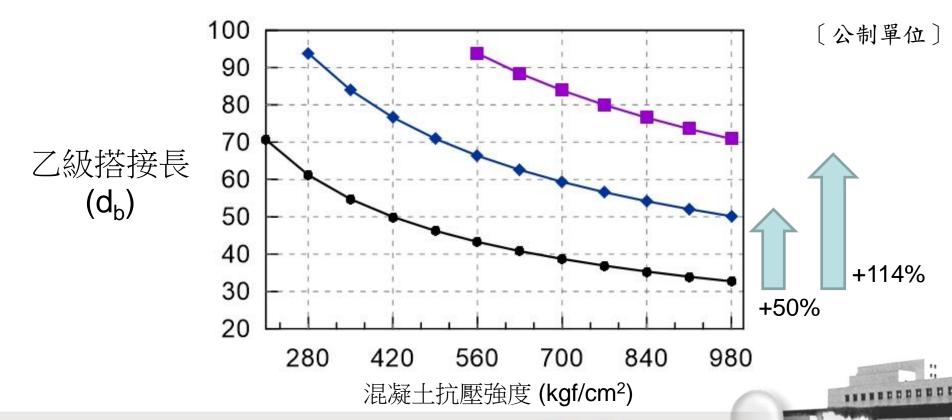

25.5.2 受拉竹節鋼筋及麻面鋼線之搭接長度

表25.5.2.1 受拉竹節鋼筋及麻面鋼線之搭接長度

搭接長度內鋼筋比 (使用A _s)/(需求A _s)	所需搭接長度內被搭接 鋼筋面積最高百分比	搭接 分級	$\ell_{st}^{[1]}$		
≥ 2.0	50	甲級	取大值	$1.0 \psi_g \ell_d$ 及 $30 \mathrm{cm}$	
	100	乙級		$1.3 \psi_{\mathbf{g}} \ell_d$	
< 2.0	所有百分比	乙級	取大值	及	
	7月月日为10			30 cm	

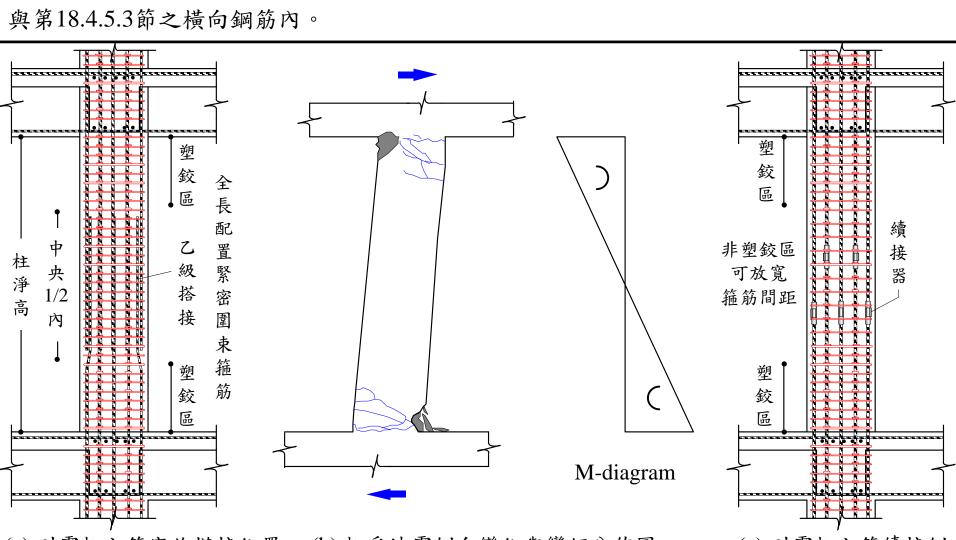
[1] 鋼筋等級修正因數


 $\psi_g = 1.00$ 適用 $f_y \le 4,200 \text{ kgf/cm}^2$ [420 MPa]鋼筋; $\psi_g = 1.08$ 適用 $f_y = 5,000 \text{ kgf/cm}^2$ [490 MPa]鋼筋; $\psi_g = 1.15$ 適用 $f_y = 5,600 \text{ kgf/cm}^2$ [550 MPa]鋼筋; $\psi_g = 1.30$ 適用 $f_y = 7,000 \text{ kgf/cm}^2$ [690 MPa]鋼筋。

搭接長度正比於 $f_y\psi_g$ 和 d_b

甲級
$$\ell_{st} = 1.0 \psi_g \ell_d = \frac{f_y \psi_t \psi_e \psi_g}{5.3 \lambda \sqrt{f'_c}} d_b$$

乙級
$$1.3\psi_g \ell_d = 1.3 \frac{f_y \psi_t \psi_e \psi_g}{5.3 \lambda \sqrt{f'_c}} d_b$$



	表C.2 竹節鋼筋受拉乙級搭接長度, ℓ_{st} 單位:cm									
£		鋼筋號數								
$f_{\mathcal{Y}}$	f_c'	#3	#4	#5	#6	#7	#8	#9	#10	#11
kgf/cm^2	kgf/cm^2	D10	D13	D16	D19	D22	D25	D29	D32	D36
	非水平頂層、一般拉力鋼筋, $\ell_{st,other}$									
	280	47	63	79	94	137	156	177	198	220
	350	42	56	70	84	122	140	158	177	197
4200	420	39	51	64	77	112	128	144	162	180
	560	39	44	56	67	97	111	125	140	156
	700	39	40	50	60	86	99	112	125	139
	280	72	96	121	145	210	240	271	304	338
	350	65	86	108	130	187	214	242	272	302
5600	420	59	79	98	118	171	196	221	248	276
	560	51	68	85	102	148	170	192	215	239
	700	46	61	76	92	133	152	171	192	214
	420	83	111	139	167	242	277	313	351	390
	560	72	96	120	145	209	240	271	304	338
7000	700	65	86	108	129	187	214	242	272	302
	840	59	79	98	118	171	196	221	248	276
	980	55	73	91	109	158	181	205	230	255
	1. 使用本表之				筋・淨間即		且有箍筋	圍東;若無	#箍筋圍束	時,淨間
附	距至少2 <i>d_b</i> 2. 使用輕質混				0					
註	<u>。 </u>					<u> </u>	20.00			

18.4.4 縱向鋼筋

. .

18.4.4.3 機械式續接須符合第18.2.7節之規定, 銲接續接則須符合第18.2.8節之規定。搭接續接僅容許於構材中央1/2淨高內,並應設計為拉力搭接,且應被圍封於符合第18.4.5.2節與第18.4.5.3節之橫向鋼筋內。

(a) 耐震柱主筋容許搭接位置 (b) 柱受地震側向變位與彎矩分佈圖

(c) 耐震柱主筋續接例

420-550 MPa 鋼筋乙級搭接長度成本

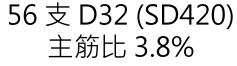
柱筋乙級搭接長度 (cm)

$f_{\mathcal{Y}}$	f_c'	#7	#8	#9	#10	#11		
kgf/cm ²	kgf/cm ²	D22	D25	D29	D32	D36		
	280	137	156	177	198	220		
4200	350	122	140	158	177	197		
4200	420	112	128	144	162	180		
	560	97	111	125	140	156		
	280	210	240	271	304	338		
5600	350	187	214	242	272	302		
3000	420	171	196	221	248	276		
	560	148	170	192	215	239		

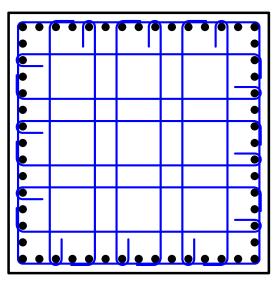
鋼筋單價以24-26元/kg估算

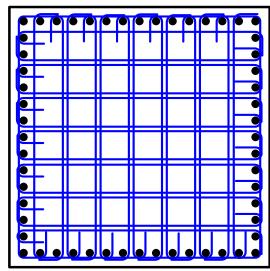
柱筋乙級搭接成本(元)

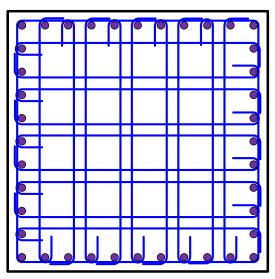
一個續接器才多少錢?



	$f_{\mathcal{Y}}$	f_c'	#7	#8	#9	#10	#11
	kgf/cm ²	kgf/cm ²	D22	D25	D29	D32	D36
		280	100	149	215	304	418
	4200	350	89	134	193	272	374
	4200	420	81	122	176	248	341
		560	71	106	152	215	295
		280	166	248	358	505	694
	5600	350	148	222	320	452	621
		420	135	203	292	412	567
		560	117	175	253	357	491


某23層大樓地下室柱斷面例 (P_u =0.50 $A_g f_c'$)


原尺度 110 cm × 110 cm、設計 $f_c' = 42 \text{ MPa} (420 \text{ kgf}/\text{cm}^2)$


56 支 D32 (SD420) 主筋比 3.8%

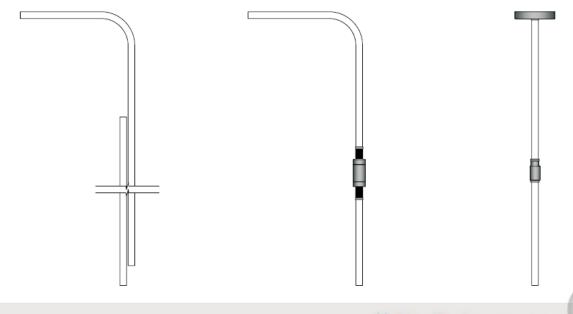
44支 D32 (SD550) 主筋比 3%

横向鋼筋 D13@10 cm
$$f_{vt} = 420 \text{ MPa} (4200 \text{ } kgf/cm^2)$$

$$\frac{A_{sh}}{sb_c} = 0.010$$

$$\geq 0.09 \frac{f_c'}{f_{vt}} = 0.009$$

$$\frac{A_{sh}}{sb_c}=0.0187$$



$$\frac{A_{sh}}{sb_c} = 0.0137$$

$$\geq 0.09 \frac{f_c'}{f_{yt}} \& 0.2k_f k_n \frac{P_u}{f_{yt}A_{ch}} = 0.0125 \to 0.0127$$

結語

- 使用高強度鋼筋、減少主筋支數(也省繫筋)
- 機械式取代搭接、T頭取代彎鉤
- 省料、省工、省時
- 續接性能需要品質保證

簡報大綱

• 鋼筋直線伸展與搭接長度

- 機械式續接設計相關規定
- 機械式續接檢驗
- 結語與展望

我國鋼筋續接器規範之演進

自日本引進續接器

施工綱要規範 03210 章 V2.0 & V3.0

2016-18 施工綱要規範 03210 章 V4.0 & V5.0

2010s

1980s

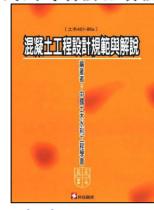
1990s

2000s

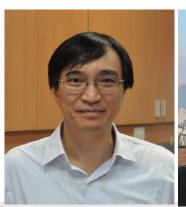
需 TAF 認可

建研所開始研議續接 器規範, 起先置於 土木 401-86 附錄乙 機械式續接器續接

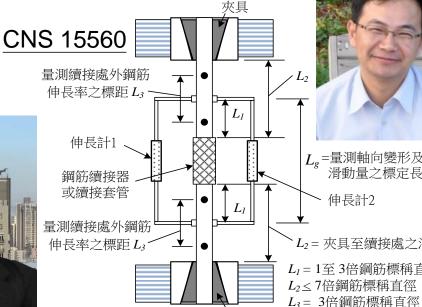
建研所(2004)續接設計規 範與施工規範及解說研修 結構工程學會(2007) 鋼筋續接器續接規範


CNS 15560 (2015) 鋼筋機械式續接試驗法

建研所委託李宏仁等人(2017) 建築工程鋼筋機械式續接性能 基準及驗證研究



2021


土木401-110

土木401-86a

L_g=量測軸向變形及 滑動量之標定長度

伸長計2

 $L_2 =$ 夾具至續接處之淨距

 $L_{l} = 1$ 至 3倍鋼筋標稱直徑

 $L_2 \leq 7$ 倍鋼筋標稱直徑

林克強教授 台科大營建系陳正誠教授

- 18.2.7 特殊抗彎矩構架與特殊結構牆之機械式續接
- 18.2.7.1 機械式續接應分為(a)、(b)或(c)類:
- (a) 第一類一符合第25.5.7節及第26.6.5節規定之機械式續接。
- (b) 第二類-符合第25.5.7節及第26.6.5節規定且能使被續接鋼筋發展至規定抗拉強度之機械式續接。
- (c) 第三類-符合第25.5.7節及第26.6.5節規定且能使被續接鋼筋發展至規定抗拉強度並承受多次反復非彈性應變之機械式續接。

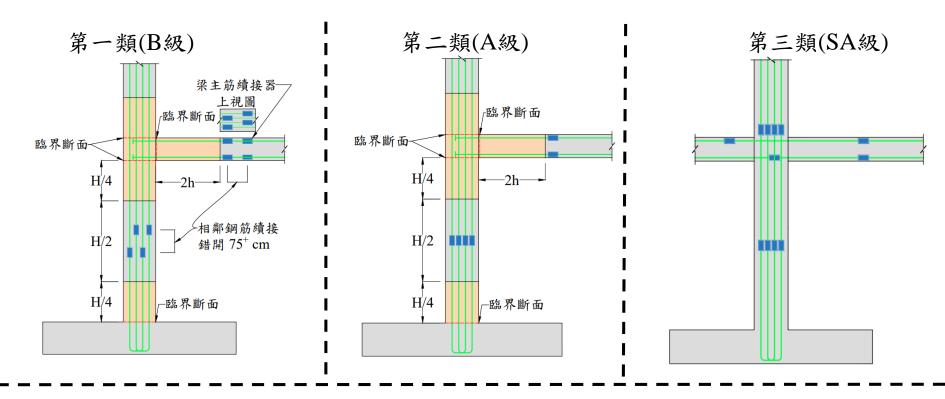
續接性	能分級	第一類 (B級)	第二類 (A級)	第三類 (SA級)
抗拉	強度	$\geq 1.25 f_y$	$\geq 1.25 f_y$	$\geq 1.25 f_y$
			且 $\geq f_u$	且 $\geq f_u$
續接組件與母	強度	\bigcirc		
材鋼筋之對比	變形(滑動量)			
	韌性(伸長率)			
地震時鋼筋電	丁能降伏區域	禁止使用	有條件使用	無條件使用

○表示性能與母材鋼筋相近。

第25章 鋼筋細節

- 25.5.7 受拉或受壓竹節鋼筋之機械與銲接續接
- 25.5.7.1 機械或銲接續接應發展其抗拉或抗壓強度至少達鋼筋1.25fy 之強度。
- 25.5.7.2 鋼筋銲接須符合第26.6.4節規定。
- 25.5.7.3 除第25.5.7.4節之規定外,機械或銲接續接位置不須錯開。
- 25.5.7.4 受拉構材之鋼筋續接,應依第25.5.7.1節規定使用機械或銲接續接,相鄰鋼筋之續接至少須錯開75 cm。。

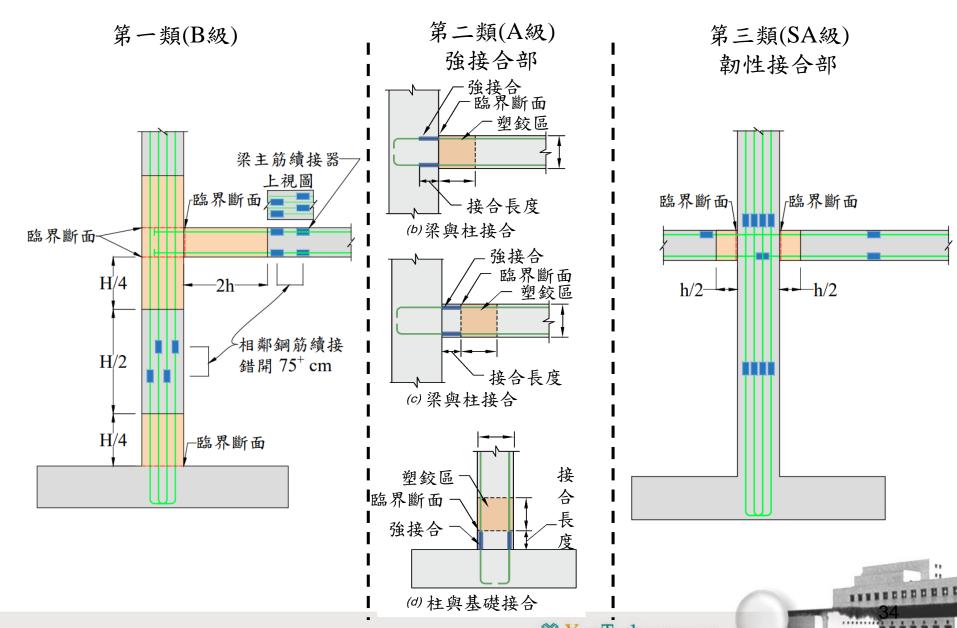
所以,到底需不需要 隔根錯開 75 cm?


第18章 耐震結構物

18.2.7.2 除第三類機械式續接外,其他機械式續接應不使用於特殊抗彎矩構架之梁或柱接頭面起算兩倍構材深度範圍內,或因側向位移超過線性行為範圍外時,導致鋼筋可能降伏之臨界斷面處起算兩倍構材深度範圍內,但容許使用於柱構材中央1/2淨高內。除第18.6.2.1節(c)所述外,第三類機械式續接應可使用於任何位置。

場鑄混凝土造構架鋼筋機械續接位置

	B級	A級	SA級
錯置75 cm	必須*	鼓勵	鼓勵
2h 範圍內	禁止使用	禁止使用	允許使用**

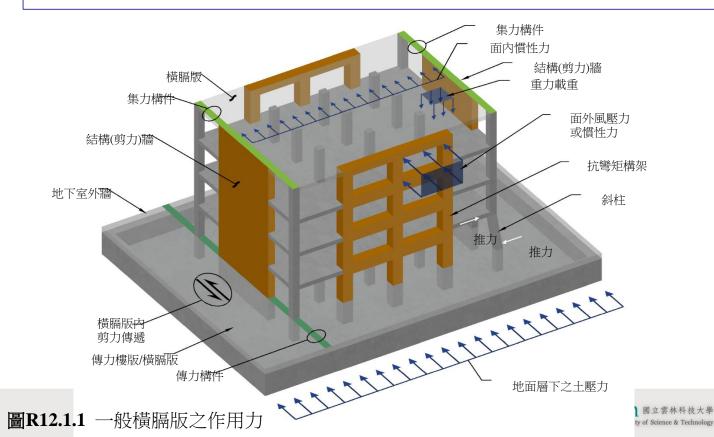

^{* 25.5.7.4}節,受拉構材

^{** 18.2.7.2}節,新版規範(2021)

預場鑄混凝土造構架鋼筋機械續接位置

18.6 預鑄混凝土造之特殊抗彎矩構架

- 18.6.1 範圍
- 18.6.1.1 本節應用於構成抵抗地震力系統一部分之預鑄混凝土造特殊抗彎矩構架系統。
- 18.6.2 通則
- 18.6.2.1 預鑄混凝土造具韌性接合之特殊抗彎矩構架須符合(a)至(c)之規定:
- (a) 第18.3至18.5節關於場鑄混凝土造之特殊抗彎矩構架之規定。
- (b) 按第22.9節之規定計算之接合部 V_n 應至少為 $2V_e$,此處 V_e 應符合第18.3.5.1 節或第18.4.6.1節之規定。
- (c) 梁鋼筋之機械式續接應離接頭面應不小於h/2,且應符合第18.2.7節之規定。
- 18.6.2.2 預鑄混凝土造具強接合部之特殊抗彎矩構架須符合(a)至(e)之規定:
- (a) 第18.3至18.5節關於場鑄混凝土造之特殊抗彎矩構架之規定。
- (b) 第18.3.2.1(a)節條文應適用在設計地震位移作用下,撓曲降伏預期發生處之間的區段
- (c) 強接合之設計強度 ϕS_n 應至少為 S_e 。
- (d) 主要縱向鋼筋應以機械式續接使其連續穿過接合部且應於強接合部外與塑 鉸區外發展其強度。
- (e) 對柱對柱的接合部而言, ϕS_n 應至少為 $1.4S_e$ 。在樓層高度內, ϕM_n 應至少為 $0.4M_{pr}$,且 ϕV_n 按第18.4.6.1節之規定,應至少為 V_e 。

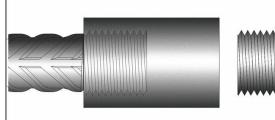


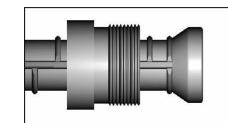
18.9.3 地震力傳遞路徑

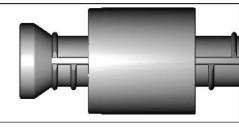
18.9.3.1 所有橫膈版及其接合部應設計使其能傳遞力量至集力構件與抵抗地震力系統之豎向構件。

. .

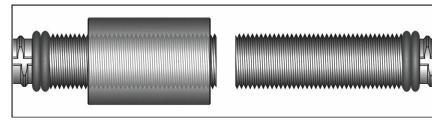
18.9.7.4 鋼筋之機械式續接若用於抵抗地震力系統中傳遞橫膈版與豎向構件間之力量時,應採用第三類機械式續接。



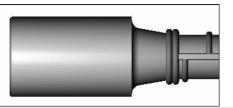

常用之續接器


圖片摘自ACI 439.3R-07報告

鋼筋車削錐拔螺紋接頭 不推薦,強度不足,見下頁投影片




冷鍛擴頭滾牙螺紋接頭


熱鍛擴頭鋼筋及直螺紋續接套管

摩擦銲接續接器(平牙)

最常見

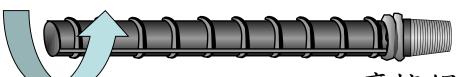
摩擦銲接續接器(錐牙)

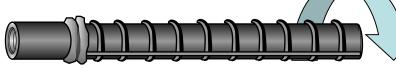
1990s或更早期續接器品管不嚴謹

鋼筋車削錐拔 螺紋接頭 (不推薦)

1999.0921.集集地震後照片 (蔡萬來提供)

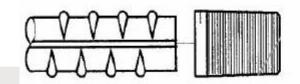
2016.0206.美濃地震後照片

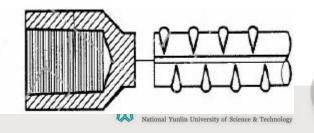

(杜怡萱教授提供)


續接強度不足、鋼筋滑脫拔出破壞

台南維冠金龍大樓倒塌現場清理之鋼筋續接接頭照片(蘇模原技師提供)

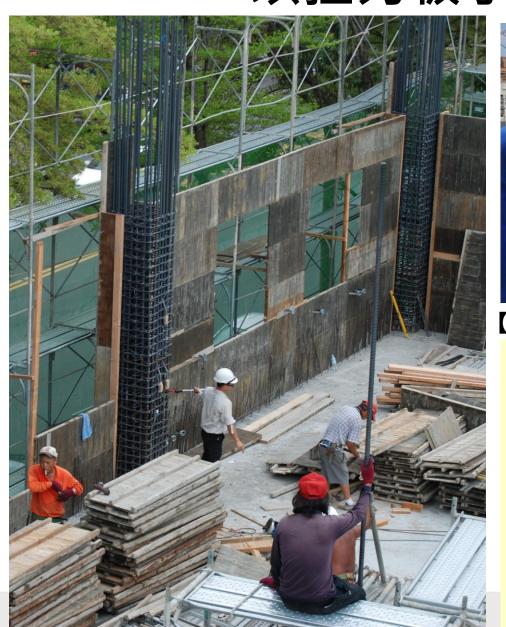
摩擦銲接續接器



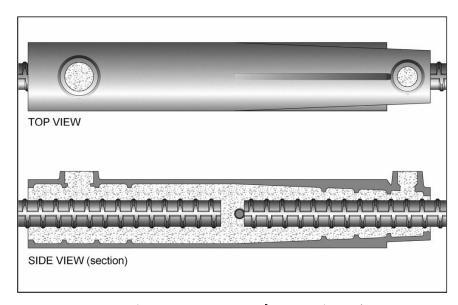


摩擦銲接續接器

- ▶ 摩擦銲接續接器之製造影片1
- ▶ 摩擦銲接續接器之製造影片2


- •可銲鋼筋、不限節形
- •摩擦壓銲續接器
- •續接時須用扳手轉動鋼筋
 - -柱主筋又長又重,施工困難
 - -梁主筋受模版阻礙,施工困難
 - -較不適合預組、預鑄工法

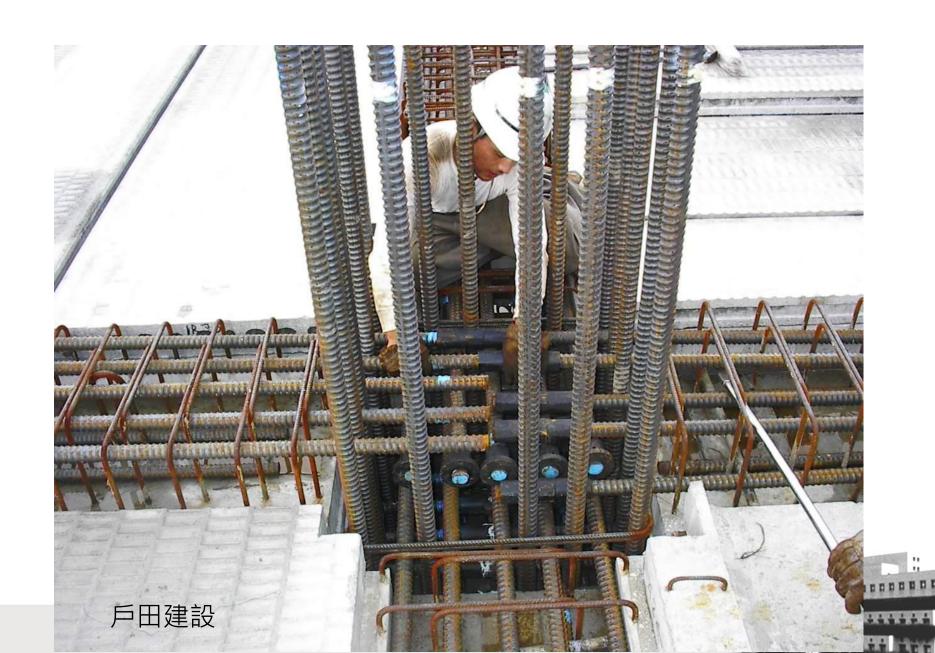
以扭力板手旋緊否?


【工程會施工綱要規範第03210章V5.0】

2.2.3 (5) D. 螺紋接合之扭力試驗: 鋼筋經加工具有螺紋之接頭,應依緊 造商建議之扭力值在工地現場鎖緊 在箍筋及緊筋未綁紮固定之前,值 程司以扭力板手抽驗,其扭力值應 於該批產品數量之[15%][],不 合格部分須鎖緊至扭力值之外, 合格部分須鎖緊至扭力值之外, 加倍抽驗直到合格為止。

預組、預鑄工法用續接器和續接套管

螺紋節鋼筋續接器



砂浆填充式續接套管

螺紋節鋼筋續接器及錨定頭

預鑄梁主筋續接例

①預鑄樑到接合處

3螺栓固定

②續接器接合

④砂漿注入充填

簡報大綱

- 鋼筋直線伸展與搭接長度
- 機械式續接設計相關規定

- 機械式續接檢驗
- 結語與展望

土木 401-110

110年4月初版

中國土木水利工程學會 混凝土工程委員會

混凝土工程設計規範與解說 (±木401-110)

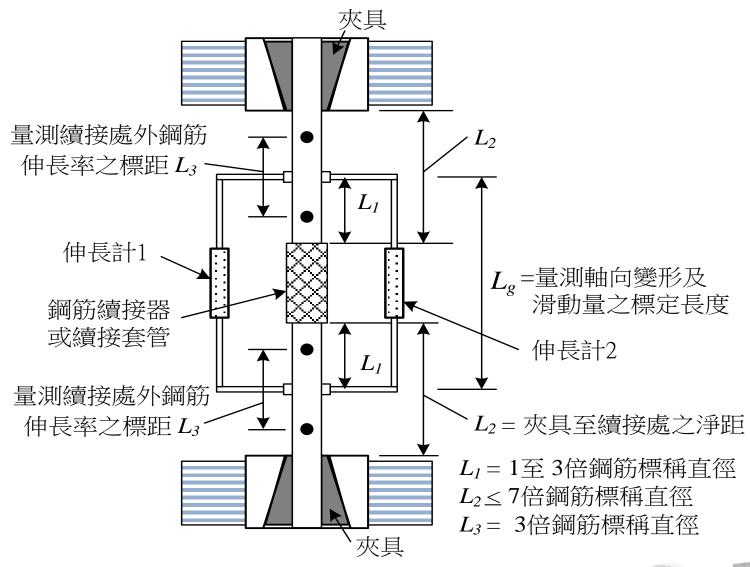
引用本規範條文為工程契約文件時,應充分瞭解工 程與本規範之適用性,針對工程特性妥訂特別條款

設計規範編審小組

方	文	志	王	承	順	Æ	_	勇	智
王	炤	烈	王	韡	蒨	吴		子	良
李	宏	仁	李		釗	李	<u>.</u>	姿	坐
兼幹事 李	翼	安	兼幹事林	佳	蓁	材	. ;	炳	昌
邱	建	國	柯	鎮	洋	涉	Ļ	崇	展
胡	銘	煌	兼幹事翁	樸	文	चे वि	,	健	章
張	大	鵬	陳	式	毅	网	2	君	弢
陳	清	泉	彭	康	瑜	黃	į		然
黄	世	建	黄	炳	勳	詹		文	宗
詹	穎	雯	廖	文	Œ	廖	2	肇	昌
劉	光	晏	召集人歐	昱	辰	荆	ř,	啟	恆
鄭	敏	元	兼幹事 蕭	輔	沛	(者	安姓	氏金	主劃序

中華民國一一〇年四月

混凝土工程委員會報告(三十八)


目 錄

第一章 總則
第二章 符號與名詞定義
第三章 參考標準
第四章 結構系統要求
第五章 載重
第六章 結構分析
第七章 單向版
第八章 雙向版
第九章 梁
第十章 柱
第十一章 牆
第十二章 横膈版
第十三章 基礎
第十四章 純混凝土
第十五章 梁柱與版柱接頭
第十六章 構材間之接合部
第十七章 混凝土結構用錨栓
第十八章 耐震結構物
第十九章 混凝土:設計與耐久性要求
第二十章 鋼筋性質、耐久性及埋置物
第二十一章 強度折減因數
第二十二章 斷面強度
第二十三章 壓拉桿方法
第二十四章 使用性要求
第二十五章 鋼筋細節
第二十六章 設計圖說及檢驗

CNS 15560 鋼筋機械式續接試驗方法

圖R26.6.5.2(a) 鋼筋機械式續接試驗裝置

26.6.5 機械式續接

26.6.5.1 檢驗頻率

- a) 鋼筋機械式續接檢驗包含施工前性能試驗及施工中品質檢驗。
- b) 鋼筋機械式續接施工前應出具最近試驗室辦理相同製造廠同型 號續接組件之性能試驗合格報告,並經監造單位核准。
- c) 鋼筋機械式續接施工期間施工廠商應全數作執行外觀檢查,並 依下表辦理工地取樣執行26.6.5.2節之試驗。

表26.6.5.1 鋼筋機械續接施工期間最低取樣頻率

计版石口	第三類(SA級)或第二類(A級)	第一類機械式續接(B級)	
試驗項目	機械式續接取樣頻率	取樣頻率	
單向拉伸及	1/100	1/100	
滑動試驗	1/100	1/100	
重複負載及	不適用	1/1000	
滑動試驗	小 週 用	1/1000	
高塑性反復	1/1000		
負載試驗	1/1000	不適用	

26.6.5 機械式續接

26.6.5.1 檢驗頻率

. . .

- d) 工地取樣須具有代表性,應由工地內已完成加工之鋼筋及續接 組件中抽樣,並在工地比照實際施工程序完成組裝,送試驗室 試驗合格後再澆鑄混凝土。
- e) 工地取樣試驗結果不符26.6.5.2節規定時,應依CNS 2608之規 定進行重驗,如重驗結果符合規定時,該批續接組件視為合格 。若重驗結果仍不合格時,該批續接組件應予以拒收。重驗以 一次為限。
- f) 外觀檢查應包括位置、型式、密合度、同軸度等項目。

26.6.5 機械式續接

26.6.5.2 允收準則

- a) 鋼筋機械式續接試驗應依CNS 15560之規定辦理, 惟指定負載、加載反復週次及循環週次等應依本 節規定辦理。
- b) 續接試體準備及裝置依CNS 15560規定辦理,續接 試體在進行試驗前不得預拉。
- c) 鋼筋機械式續接試驗合格標準如表26.6.5.2所列。
- d) 除非另有規定,試體破壞模式如斷裂位置或鋼筋 拔出等不作為等級判別或拒收之理由。
- e) 高塑性反復負載試驗過程如發生試體挫曲之現象,該試驗視為無效而非試體不合格。

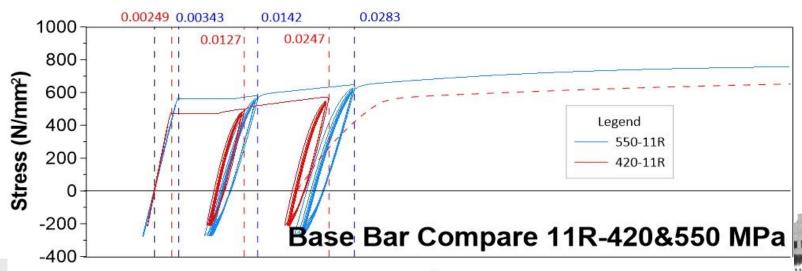
續接器檢驗準則

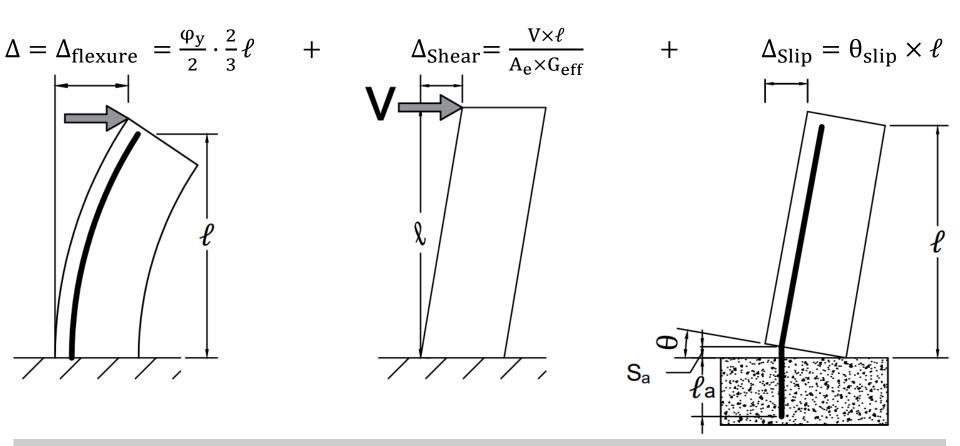
與03210章V5.0有差異

表26.6.5.2 鋼筋機械式續接試驗性能合格標準

〔新版規範適用高強度鋼筋〕

业				合格標準	
試驗項目	加載程序	指標	第三類	第二類	第一類
(頻率)			(SA級)	(A級)	(B級)
		抗拉強度	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$
單向拉伸及	0 0000	殘留滑動量 $(\delta_s)_{1c}$	≤ 0.3 mm	≤ 0.3 mm	≤ 0.3 mm
滑動試驗	$0 \rightarrow 0.95 P_y \rightarrow 0.02 P_y$		≥9%,鋼筋尺度		
(1/100)	→拉至破壞	續接處外鋼筋之伸長	D32以下	≥ 4%	> 20%
(1/100)		率[1]	≥6%,鋼筋尺度	≥ 470	(B級) $ ≥ 1.25 f_y $ ≤ 0.3 mm $ ≥ 2\% $ $ ≥ 1.25 f_y $ ≤ 0.3 mm $ ≥ 2\% $
			D36以上		
七十九十二日		抗拉強度	不適用	不適用	(B級) ≥ 1.25 f _y ≤ 0.3 mm ≥ 2% ≥ 1.25 f _y ≤ 0.3 mm ≥ 2% 不適用 不適用 不適用 不適用 不適用
重複負載及 滑動試驗	$0 \rightarrow (0.95P_y \leftrightarrow 0.02P_y) \times 30$ 回	滑動量 $(\delta_s)_{30c}$	不適用	不適用	
(1/1000)	→拉至破壞	$D36以上$ 抗拉強度 不適用 滑動量 $(\delta_s)_{30c}$ 不適用 $\frac{f_{10}}{f_{10}}$ 不適用 $\frac{f_{10}}{f_{10}}$ 不適用 $\frac{f_{10}}{f_{10}}$ 不適用 $\frac{f_{10}}{f_{10}}$ 不適用 $\frac{f_{10}}{f_{10}}$ $\frac{f_{10}}$	不適用	不適用	≥ 2%
		抗拉強度	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$ 且 $\geq f_u$	不適用
		滑動量 $(\delta_s)_{16c} - (\delta_s)_{1c}$	≤ 0.3 mm	≤ 0.3 mm	不適用
高塑性反復	$0 \rightarrow (0.95P_y \leftrightarrow -0.5P_y) \times 16$ 回	滑動量 $(\delta_s)_{24c}$	≤ 0.9 mm	≤ 0.9 mm	不適用
負載試驗	$ \rightarrow (n\delta_y \leftrightarrow -0.5P_y) \times 8 回 $ $ \rightarrow (2n\delta_y \leftrightarrow -0.5P_y) \times 8 回 $	滑動量 $(\delta_s)_{32c}$	≤ 1.8 mm	不適用	不適用
(1/1000)			≥9%,鋼筋尺度		
	→拉至破壞 ^[2]	續接處外鋼筋之伸長	D32以下	≥ 4%	不適用
		率[1]	≥6%,鋼筋尺度	≥ 470	个週用
			D36以上		


^[1]續接處外兩側鋼筋伸長率之較大值。


修訂重點:塑性應變值與倍率

降伏強度 <i>f_y</i> (MPa)	降伏應變 $arepsilon_y = rac{f_y}{E_s}$	塑性倍率 n	$narepsilon_y$	$2 n arepsilon_y$
420	0.00210	6	0.0126	0.0252
550	0.00275	5	0.0138	0.0275
690	0.00345	4	0.0138	0.0275

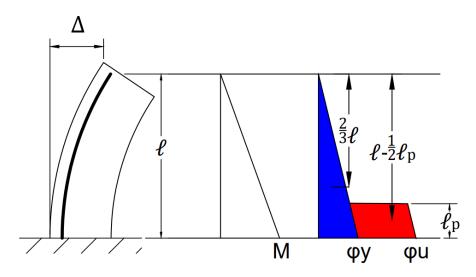
 $E_S = 200,000 MPa$

塑性鉸長度法

$$G_{eff} = 0.2E_c$$
 (Elwood and Eberhard 2009 recommended)

$$A_e = \frac{5}{6} A_g \ (retangular \ sections)$$

$$\theta_{slip} = \frac{d_b f_{s,max}^2}{8E_s \bar{u}} \frac{1}{(d-c)}$$


 $\bar{u}=1\sqrt{f'c}$ MPa (Lehman and Moehle 2000 and Sezen and Setzler 2008)

$$\Delta = \Delta_y$$
 (彈性變位) $+\Delta_p$ (塑性變位)

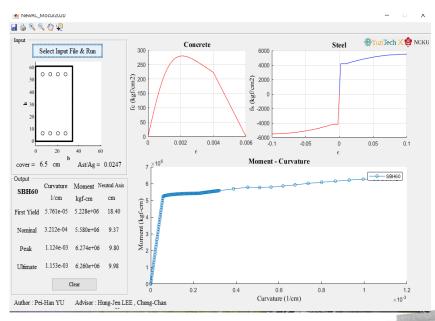
•
$$\Delta_{y} = \frac{\varphi_{y}}{2} \cdot \frac{2}{3} \ell + \frac{V_{y} \cdot \ell}{A_{e} \times G_{eff}} + \frac{d_{b} f_{y}^{2}}{8 E_{s} \overline{u}} \frac{1}{(d-c)}$$

•
$$\Delta_{\mathrm{p}} = (\varphi_{u} - \varphi_{y}) \ell_{p} (\ell - \frac{\ell_{p}}{2})$$

•
$$\ell_{\rm p} = 0.5 {\rm h}$$

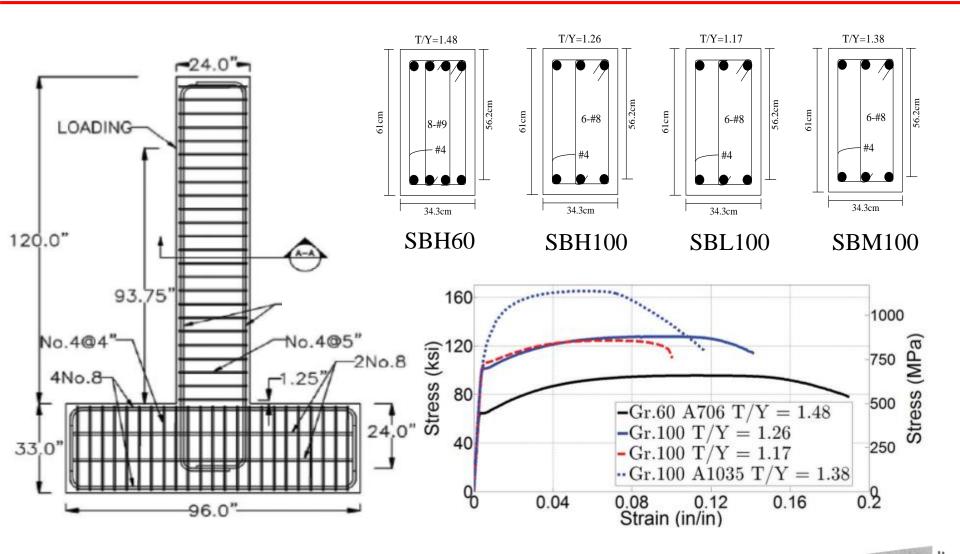
【Moment-Curvature 斷面分析】

NewRC-Mocur2020


指導教授:李宏仁博士&洪崇展博士

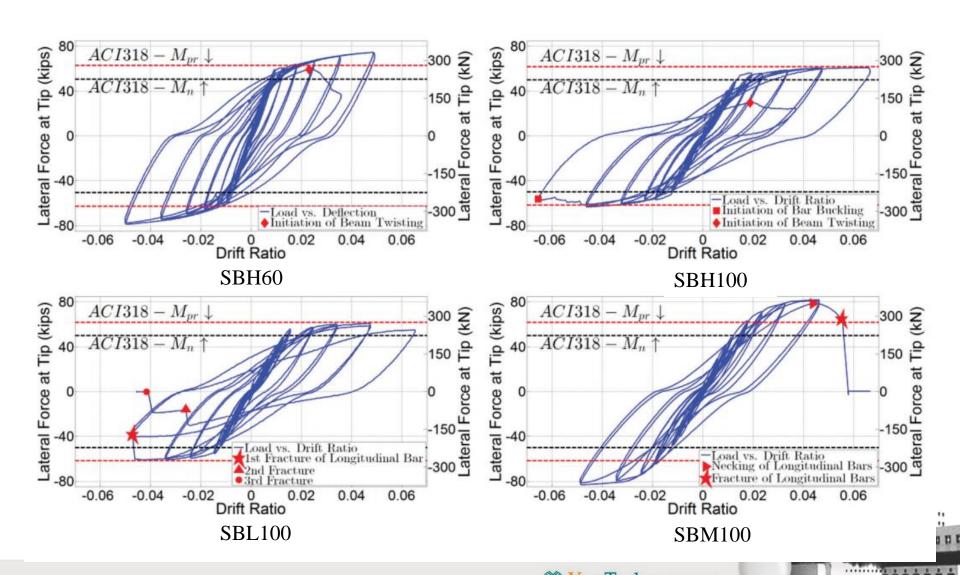
學生:余沛涵

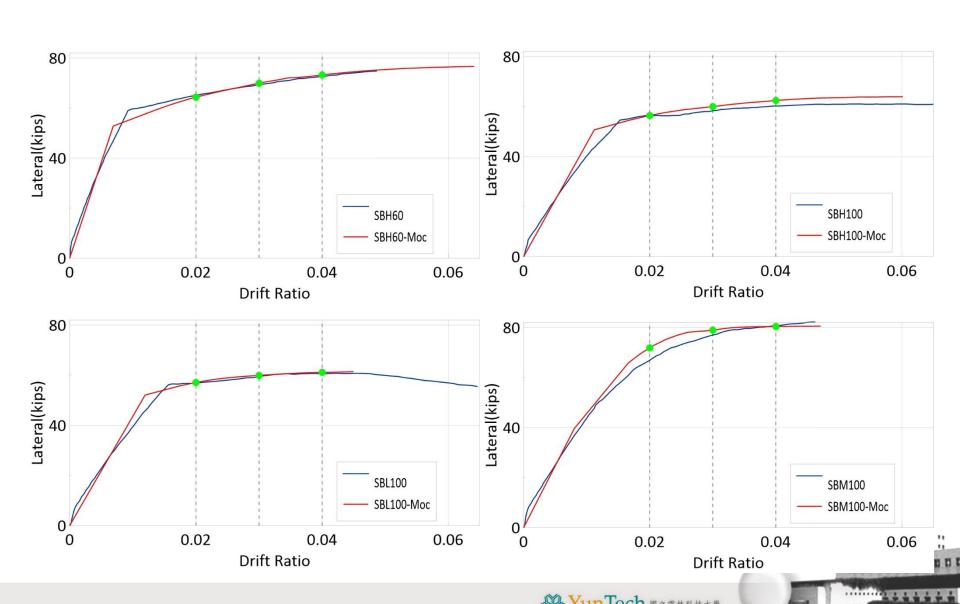
信箱: peihan105@gmail.com


Facebook社團: NewRC-Biax-2020

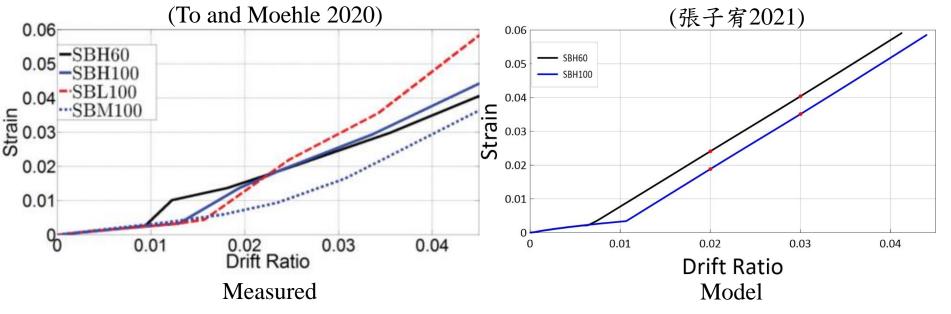
DOWNLOAD

余沛涵;李宏仁; and 洪崇展, "新高強度鋼筋混凝土矩形斷面彎矩曲率分析程式之開發,"中華民國第十五屆結構工程研討會暨第五屆地震工程研討會, 台南, 2020, pp. 10.


Moment-Curvature 斷面分析

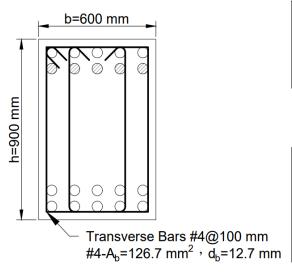

To, D. V.; and Moehle, J. P., "Special Moment Frames with High-Strength Reinforcement--Part 1: Beams," ACI Structural Journal, V. 117, No. 2, 2020.

17

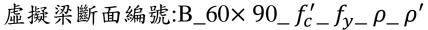

Moment-Curvature 斷面分析

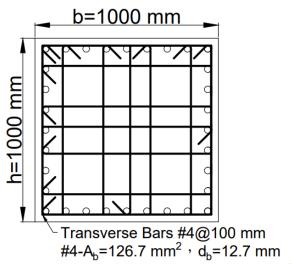
Moment-Curvature 斷面分析

負載試驗塑性倍率之決定



ユレ 日本 カ イ の	加太太加	降伏應變	2%	D.R.	3%	D.R.
試體名稱	鋼筋等級	$arepsilon_y$	Measured	Model	Measured	Model
SBH60	420 MPa	0.0021	$0.0152 (7\varepsilon_y)$	$0.0241 (11\varepsilon_y)$	$0.0252 \left(\frac{12\varepsilon_{y}}{}\right)$	$0.0404 (19\varepsilon_y)$
SBH100	690 MPa	0.0035	$0.0148 (4\varepsilon_y)$	$0.0188 (5\varepsilon_y)$	0.0263 (<mark>8</mark> \varepsilon_y)	$0.0351 (10\varepsilon_y)$


鋼筋等級	塑性倍率n	塑性倍率2n	迴圈數
420 MPa	6	12	8
550 MPa	5	10	8
690 MPa	4	8	8

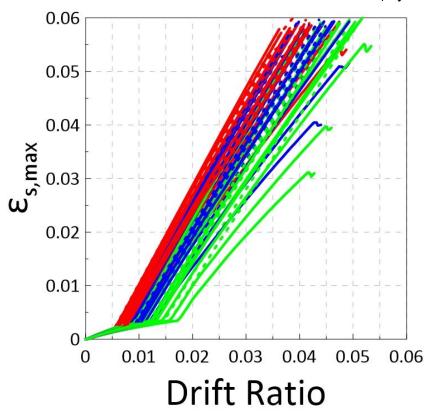


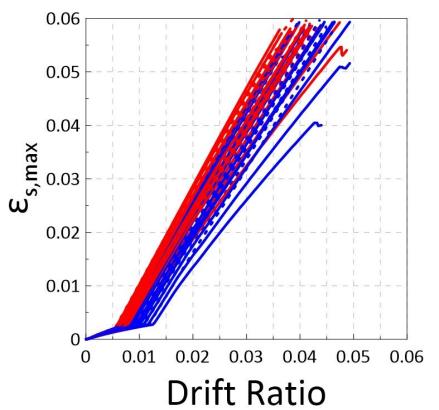
模擬構件斷面參數(張子宥2021)

	梁斷面參數	種類				
f_c'	28 · 49 · 70	3				
$f_{\mathcal{Y}}$	420 · 550 · 690	3				
ρ	0.6% · 1.0% · 1.6% · 2.0%	4				
$\frac{\rho}{\rho'}$	2.0 · 1.0	2				
	總計:72組					

	柱斷面參數	種類
f_c'	28 · 49 · 70	3
$f_{\mathcal{Y}}$	420 · 550 · 690	3
ρ	1.0% · 2.0% · 3.0%	3
$\frac{P}{A_g \times f_c'}$	0.1 · 0.2 · 0.3	3
	總計:81組	

模擬梁柱斷面鋼筋應變分析

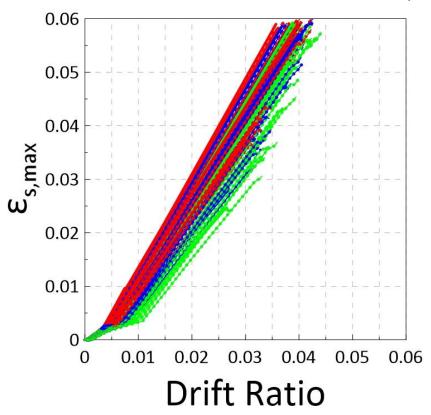


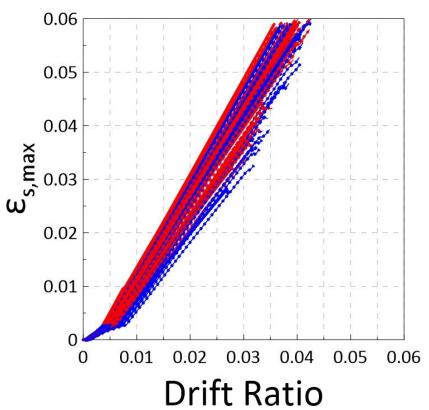

模擬梁斷面分析

紅:420 MPa

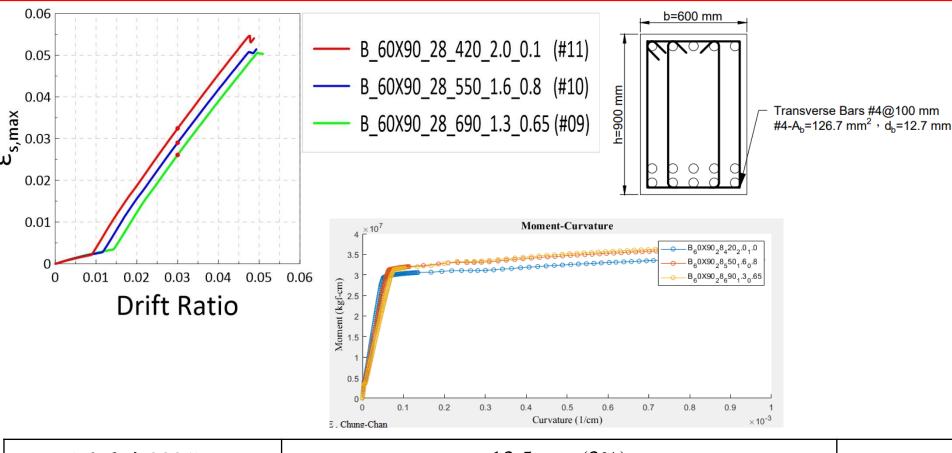
藍:550 MPa

綠:690 MPa




模擬柱斷面分析

紅:420 MPa

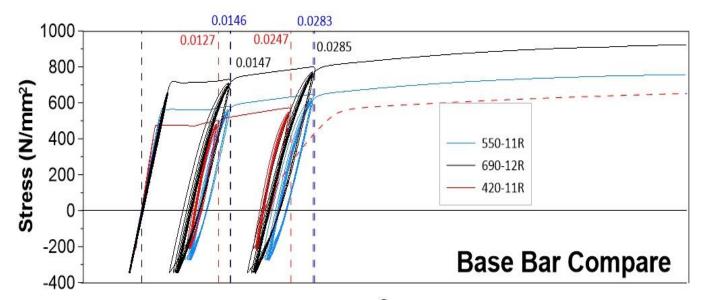

藍:550 MPa

綠:690 MPa

維持Mn變化鋼種及號數模擬梁斷面分析

(張子宥2021)	13.5 cm (3%)		C C
模擬梁斷面編號	Δ shear+ Δ slip+ Δ flexure= Δ y (D.R.)	Δp (D.R.)	ES
B_60×90_28_420_2.0_1.0	0.16+0.77+3.06=3.99 (0.89%)	9.66 (2.15%)	0.03289
B_60×90_28_550_1.6_0.8	0.18+1.16+3.87=5.21 (1.16%)	8.29 (1.84%)	0.02905
			March Colombia (197

0.18+1.57+4.67=6.42 (1.43%)


₹7.08 (1.57%)

 $B_{60} \times 90_{28} = 690_{1.3} = 0.65$

維持Mn變化鋼種及號數模擬柱斷面分析

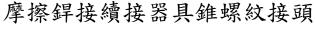
- 00		5.4 cm (3%)	(張子宥2021)
ES	Δp (D.R.)	Δ shear+ Δ slip+ Δ flexure= Δ y (D.R.)	模擬柱斷面編號
0.03744	4.44 (2.47%)	0.18+0.30+0.48=0.96 (0.53%)	C_100×100_28_420_3.22_0.2
0.03558	4.15 (2.31%)	0.19 + 0.45 + 0.61 = 1.25 (0.69%)	C_100×100_28_550_2.61_0.2
)0:03393	3.87 (2.15%)	0.19+0.61+0.73=153(0785%) 素林科技:	C_100×100_28_690_2.07_0.2
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	THOSE THE PARTY OF	Wandhai Yunun Ontersity of Science & Identi-	

420、550、690 Mpa 鋼筋母材反復應力應變曲線之比較

母材種類	į	420	550	690
塑性倍率	n	6	5	4
71 图 改 化 庥 綫 (n S)	標稱	0.0126	0.0138	0.0138
24 圈 降 伏 應 變 $(n\delta_y)$	實際	0.0127	0.0146	0.0147
27图 改 化 庇 総 (2m S)	標稱	0.0252	0.0275	0.0276
32 图降伏應變 $(2n\delta_y)$	實際	0.0247	0.0283	0.0285

因實際機台誤差造成標稱與實際降伏應變有些微誤差,不同強度 鋼種雖降低塑性倍率但應變更高,較自訂程序更為嚴格。 65

鋼筋續接組件試驗



BLC鋼筋續接系統

冷鍛擴頭滾牙螺紋接頭續接組件

螺紋節鋼筋續接器(砂漿填充式)

螺紋節鋼筋續接(砂漿填充式)

內政部建築研究所

高強度鋼筋機械式續接性能合格標準及驗證研究

550 MPa等級的測試結果一覽表


李宏仁等人(2020)

續接器製造商	/ / 續接器種類(550	0 MPa)	完成	試驗 日期	判定
常基	擴頭滾牙螺紋接頭	接頭 8R	3	03/12	SA級
W.Z	₩ - X (/X -) - 3	10R	3		
	明小太太~太はけ四	12R	9	04/30	SA級
東京鐵鋼	螺紋節鋼筋續接器 (砂漿填充式)	13R	9	05/07	SA級
東京鐵鋼	砂漿填充續接套管	13R	9	05/14	A級
東和鋼鐵	螺紋節鋼筋續接器 (砂漿填充式)	11R	3	06/04	SA級
東和鋼鐵	摩擦銲接續接器	11R	3	06/11	SA級
豐興鋼鐵(母材) 蘭州工程(續接)	摩擦銲接續接器	11R	3	07/08	SA級

National Yunlin University of Science & Technology

簡報大綱

- 鋼筋直線伸展與搭接長度
- 機械式續接設計相關規定
- 機械式續接檢驗

• 結語與展望

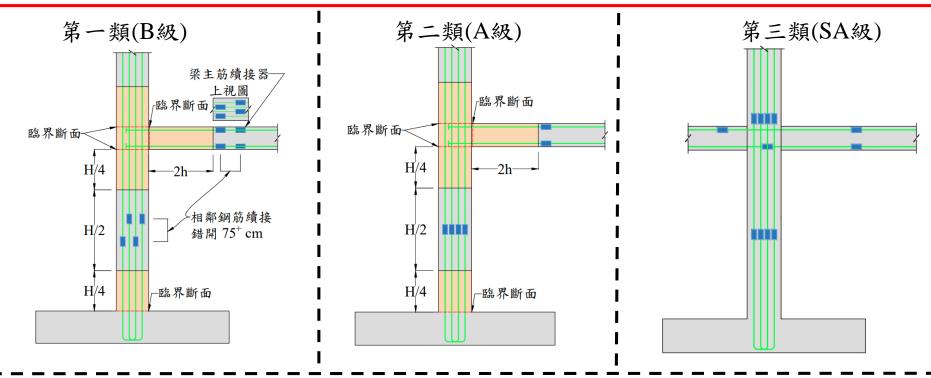
建議一:續接器性能分級

- 18.2.7 特殊抗彎矩構架與特殊結構牆之機械式續接
- 18.2.7.1 機械式續接應分為(a)、(b)或(c)類:
- (a) 第一類一符合第25.5.7節及第26.6.5節規定之機械式續接。
- (b) 第二類一符合第25.5.7節及第26.6.5節規定且能使被續接鋼筋發展至規定抗拉強度之機械式續接。
- (c) 第三類一符合第25.5.7節及第26.6.5節規定且能使被續接鋼筋發展至規定抗拉強度並承受多次反復非彈性應變之機械式續接。

續接性能分級		第一類 (B級)	第二類 (A級)	第三類 (SA級)
抗拉強度		$\geq 1.25 f_y$	$\geq 1.25 f_y$	$\geq 1.25 f_y$
			且 $\geq f_u$	且 $\geq f_u$
續接組件與母	強度	\bigcirc		
材鋼筋之對比	變形(滑動量)			
	韌性(伸長率)			
地震時鋼筋可能降伏區域		禁止使用	有條件使用	無條件使用

○表示性能與母材鋼筋相近。

建議二:鋼筋機械式續接試驗性能合格標準


	Τ	T	ı	A 17. 1 or 12h		
試驗項目			合格標準			
1	加載程序	指標	第三類	第二類	第一類	
(頻率) 加勒征河			(SA級)	(A級)	(B級)	
單向拉伸及		抗拉強度	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$	
	0.050.000	殘留滑動量 $(\delta_s)_{1c}$	≤ 0.3 mm	≤ 0.3 mm	≤ 0.3 mm	
滑動試驗	$0 \rightarrow 0.95 P_y \rightarrow 0.02 P_y$		≥9%,鋼筋尺			
(1/100)	→拉至破壞	續接處外鋼筋之伸長率	度D32以下	≥ 4%	≥ 2%	
			≥6%,鋼筋尺			
			度D36以上			
重複負載及 滑動試驗 (1/1000)	$0 \rightarrow (0.95P_y \leftrightarrow 0.02P_y) \times 30$ 回 \rightarrow 拉至破壞	抗拉強度	不適用	不適用	$\geq 1.25 f_y$	
		滑動量 $(\delta_s)_{30c}$	不適用	不適用	≤ 0.3 mm	
		續接處外鋼筋之伸長率	不適用	不適用	≥ 2%	
高塑性反復 負載試驗 (1/1000)	$0 \rightarrow (0.95P_y \leftrightarrow -0.5P_y) \times 16$ 回 $\rightarrow (n\delta_y \leftrightarrow -0.5P_y) \times 8$ 回 $\rightarrow (2n\delta_y \leftrightarrow -0.5P_y) \times 8$ 回 $\rightarrow $ 拉 至 破 壞 [2]	抗拉強度	$\geq 1.25 f_y$ 且 $\geq f_u$	$\geq 1.25 f_y$ 且 $\geq f_u$	不適用	
		滑動量 $(\delta_s)_{16c} - (\delta_s)_{1c}$	≤ 0.3 mm	≤ 0.3 mm	不適用	
		滑動量 $(\delta_s)_{24c}$	≤ 0.9 mm	≤ 0.9 mm	不適用	
		滑動量 $(\delta_s)_{32c}$	≤ 1.8 mm	不適用	不適用	
		續接處外鋼筋之伸長率	≥9%,鋼筋尺 度D32以下 ≥6%,鋼筋尺 度D36以上	≥ 4%	不適用	

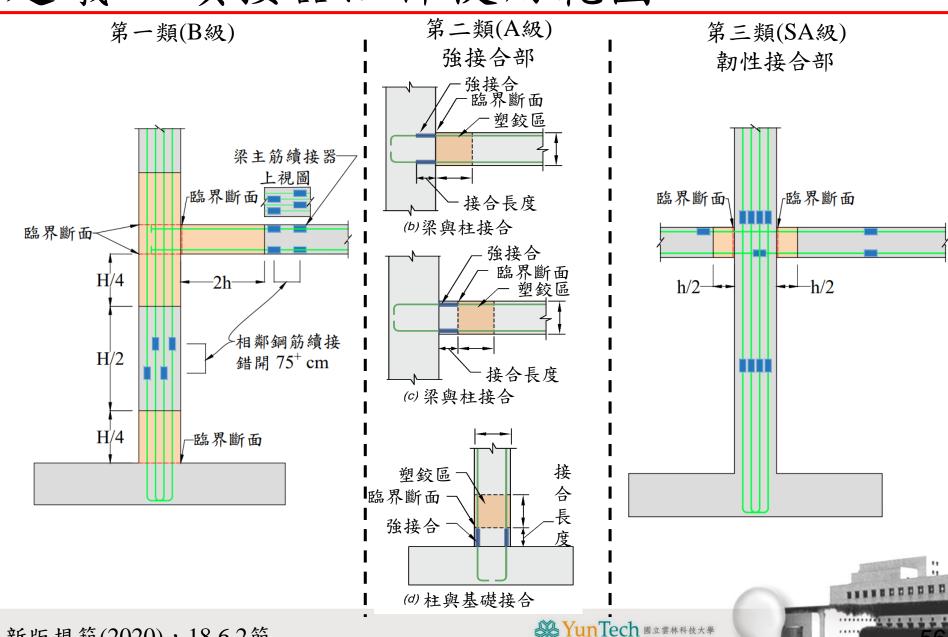
^[1]續接處外兩側鋼筋伸長率之較大值。 [2]第二類(A級)完成24回後可拉至破壞;

 $f_y \le 4,200 \text{ kgf/cm}^2 [420 \text{ MPa}]$ 之鋼筋,塑性倍率n=6; $f_y = 5,600 \text{ kgf/cm}^2 [550 \text{ MPa}]$ 之鋼筋,塑性倍率n=5; $f_y = 7,000 \text{ kgf/cm}^2 [690 \text{ MPa}]$ 之鋼筋,塑性倍率n=4。

立雲林科技大學 Science & Technology

建議三:續接器組件使用範圍

	B級	A級	SA級
錯置75 cm	必須*	鼓勵	鼓勵
2h 範圍內	禁止使用	禁止使用	允許使用**


^{* 25.5.7.4}節,受拉構材

^{** 18.2.7.2}節,新版規範(2021)

建議三:續接器組件使用範圍

鋼筋組立工法之改良

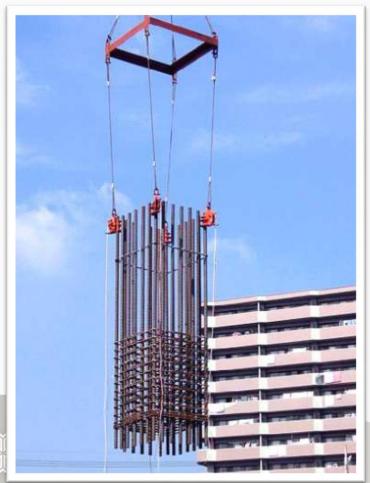
最經濟

經濟、快速、 口质

工法 比較	傳統 現場組立	預組工法	預鑄工法
混凝土 /模板	現場一體澆置	現場一體澆置	工廠預鑄構件 現場澆置接合部
鋼筋續接	搭接 螺紋式續接	搭接 螺紋式續接	套管式續接 螺紋式續接
人力	多	中	少
工期	慢	中	快

主筋支數要減少易於機械續接

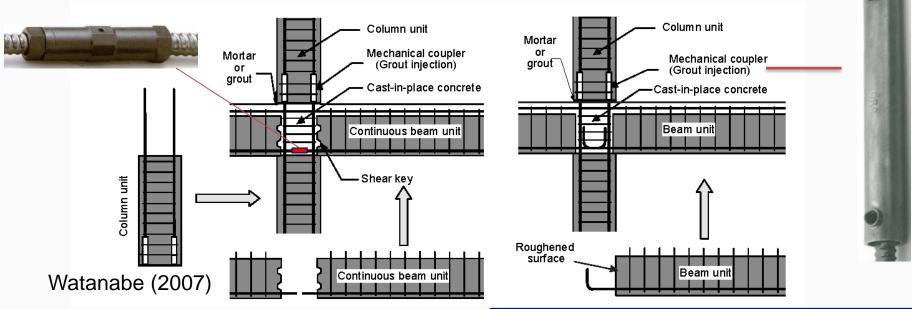
高強度鋼筋!

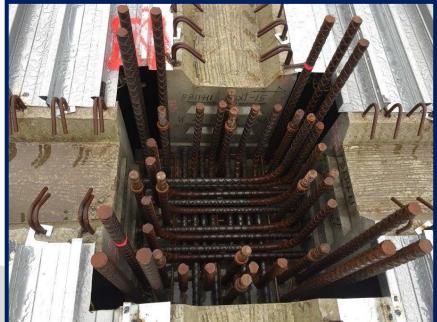


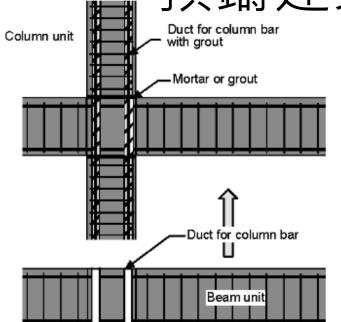
TOTAL COST DOWN!! 總成本降低

預組工法

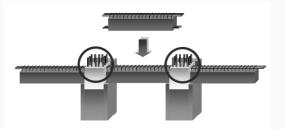
- 預組、吊裝、續接
- 省工、省時






預鑄建築工法之演進 Stage I

預鑄建築工法之演進 Stage II



參考日本都市更新經驗

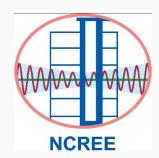
The Tokyo Towers, 2008年完工時為日本最高 (58F, 192m)之New RC住宅

New RC 預鑄工法

展望

- 預鑄工法:工廠化製造+模組化施工
- 如期、如質、如度
- 提高建築工程品質、減少環境汙染
- 國內依循規範文件也已完成,預鑄實績將越來愈多

2018台中


2019 在板橋

Acknowledgement

簡報結束 敬請指教

內政部建築研究所

Architecture and Building Research Institute

參考書目

- 李宏仁, 林克強, 張子宥, 林明志. (2020), 高強度鋼筋機械式續接性能合格標準及驗證研究, 內政部建築研究所, 台北. ISBN: 978-986-5450-43-4
- 李宏仁, 2016, 建築工程鋼筋續接器的合理應用, 混 凝土科技, Vol.10, No.2, pp.56-64.
- 工程會施工綱要規範 第03210章鋼筋V5.0 (2018)
- 台灣混凝土學會(2017),預鑄混凝土工程施工規範 與解說(第8章預鑄構材之接合)